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Abstract

Iterative thresholding algorithms have a long history of application to signal processing. Although they are intuitive and easy to
implement, their development was heuristic and mainly ad hoc. Using a special form of the thresholding operation, called soft threshold-
ing, we show that the fixed point of iterative thresholding is equivalent to minimum /;-norm reconstruction. We illustrate the method for
spectrum analysis of a time series. This result helps to explain the success of these methods and illuminates connections with maximum
entropy and minimum area methods, while also showing that there are more efficient routes to the same result. The power of the /;-norm
and related functionals as regularizers of solutions to underdetermined systems will likely find numerous useful applications in NMR.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The computation of NMR spectra from short, noisy
data records has long been a challenging problem. Proce-
dures adopted from fields outside of NMR have proven
to be superior to the discrete Fourier transform (DFT)
[1,2]; examples include maximum entropy (MaxEnt) [3,4];
and minimum-area [5] reconstruction, maximum-likeli-
hood reconstruction (MLM) [6,7], and matrix methods
such as LPSVD [8], HSVD [9], and filter diagonalization
method (FDM) [10], and reduced dimensionality methods
including RD [11], GFT [12], and back-projection recon-
struction [13]. A method that is conceptually simpler and
easier to implement than these methods is iterative thres-
holding [14-16]. This and related thresholding algorithms
are widely used in the fields of image processing and fMRI.
Iterative thresholding is a fixed-point technique; an opera-
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tion is repeatedly applied until it no longer results in a
change. The repeated operation has a particularly simple
form: it involves setting all values below a threshold 7 (in
absolute value) to zero, while leaving values above t
unchanged.

Iterative thresholding algorithms applied to spectrum
analysis have a strong heuristic appeal. Consider a free
induction decay (FID) containing several exponentially
decaying sinusoids with similar amplitudes, in which the
length of the FID is short compared to the decay time of
the sinusoids. A high-resolution estimate of the spectrum
can be obtained by zero-filling the FID prior to discrete
Fourier transformation, but the DFT spectrum will con-
tain truncation artifacts. Choose a threshold value t that
is smaller than the peak maxima, but larger than any trun-
cation artifacts, and set every point in the DFT spectrum
that is below 1t to zero, leaving the others unchanged.
The inverse DFT of the thresholded spectrum will not
agree very well with the input FID. However, if we con-
sider only the part that extends the measured data, we
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may find that it is a more realistic extension than extending
the data with zeros. Thus a better spectral estimate may be
obtained by extending the FID with values from the inverse
DFT of the thresholded spectrum, or equivalently, replac-
ing the initial part of the inverse DFT with the original
FID. This process of inverse Fourier transformation,
replacement, Fourier transformation, and thresholding
(Fig. 1) is repeated until there is no change in the spectrum,
that is, until the fixed-point is reached.

We refer to the thresholding operation in which values
above 7 are unchanged as hard thresholding. By contrast,
in the soft thresholding operation, data with absolute val-
ues above t are reduced by t (with no change in complex
phase). We show in the Appendix (Supplementary mate-
rial) that the fixed-point of iterative soft thresholding
(IST) is also a minimum /;-norm reconstruction (defined
below). This equivalence has several implications. (1) For-
mal results on the properties of minimum /;-norm recon-
structions have been derived; no comparable results on
the properties of the fixed-points of iterative thresholding
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Fig. 1. A schematic diagram of IST. The initial trial spectrum is the DFT
of the zero-filled data. Subsequent trial spectra are computed by applying
the soft thresholding operation: setting points below a threshold to zero,
and subtracting the threshold from all other points. The result is inverse
Fourier transformed, the “tail” is used to extend the measured data, and
the augmented data is forward Fourier transformed and thresholded.

procedures are available. (2) Logan’s theorem [17] shows
that under certain circumstances /;-norm reconstruction
is able to perfectly reconstruct the spectrum of a noisy sig-
nal. (3) The equivalence demonstrates how IST can be gen-
eralized to incorporate deconvolution and modified to
improve convergence. (4) The equivalence illuminates sim-
ilarities between IST and methods such as MaxEnt and
minimum-area reconstruction. The power of the /;-norm
for regularizing reconstructions from sparse or noisy data
has received considerable attention in the statistical and
applied mathematics communities [17-20], and helps to
explain the success of iterative thresholding methods.

We also note that fixed thresholding has been applied to
the wavelet domain as a means for “denoising” NMR spec-
tra [21-23]. While we consider thresholding in the fre-
quency or Fourier domain in this work, similar results
(the equivalence of iterative soft thresholding and /;-norm
regularization) apply to wavelet thresholding.

2. Minimum /;-norm reconstruction

The /;-norm of a spectrum f is defined as

L) = el = S 1) (1)

w=0

where N is the number of points in the complex vector f.
The goal of minimum /;-norm reconstruction is to find
the spectrum f which minimizes L(f) subject to the con-
straint that f is consistent with the experimental data. This
constraint is expressed by the formula

1 M-1
c(f) =5 > [IDFT(f), — di* < Co, (2)
k=0

where M is the number of points in the complex FID d and
Cy is an estimate of the experimental error; IDFT is the in-
verse DFT. Minimum /;-norm reconstruction is similar to
minimum area reconstruction, proposed by Newman [5],
the only difference being that Newman’s “area’” amounts
to > |Re(f,,)| + |Im(f,)|, which is not invariant under
changes of phase. As we shall see later, minimum /;-norm
also bears a resemblance to MaxEnt.

The properties of minimum /;-norm reconstruction were
extensively studied by Logan [24]. One of his most striking
results is that under certain conditions, having to do with
the relative sparsity of the noise in the FID and the peaks
in the spectrum, minimum /;-norm reconstruction can
result in a perfect spectrum, with no residual noise. Unfor-
tunately, Logan’s conditions do not apply to real NMR
data, but this result indicates the potential power of the
technique.

The problem of determining the minimum /;-norm
reconstruction can be converted to an unconstrained opti-
mization problem by introducing a Lagrange multiplier 7.
Let the objective function Q(f) be given by

o(f) = <L(f) + C(f). (3)
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As we show in the Appendix (Supplementary material),
if f is a minimum /;-norm reconstruction, then f is a mini-
mum of Q. One technique for finding this minimum is to
perform a gradient search. The gradient of Q is

VO(f) = tVL(f) + VC(f). (4)
Computing the gradient of L is straightforward.

Expanding Eq. (1), and writing /7 and f! for the real
and imaginary parts of f,,, we obtain

N-1
L(f) =) Ifol, (5)
=0
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We will adopt the convention that OL/0f, is

OL/0f% +10L/0f;, which yields
oL So
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The derivation of VC(f) is more laborious; we simply
state the result [details are given in (14)]. Let F be the
(N X N) unitary matrix corresponding to the DFT, and
let K be the (M x N) projection matrix which shortens an
N-element vector to its first M elements. Then

c() = 5 |KF'f —af )
and
VC(f) = FK'(KF'f — d), (9)

where T denotes the Hermitian transpose, F' corresponds
to the IDFT and K' corresponds to zero-filling.

3. Relationship of IST to minimum /;-norm reconstruction

The somewhat opaque expression in Eq. (9) belies the
simplicity of the underlying operations. Re-writing Eq.
(9) in operator notation,

VC(f) = DFT{zerofill(shorten(IDFT(f)) — d)}
= DFT{trunc(IDFT(f)) — zerofill(d)}, (10)

where trunc(x) = zerofill(shorten(x)) is the operation of
setting the elements x,4,...,xy_1 to zero. Now we are in
a position to see the unexpected relationship between the
gradient of Q and the operations of IST. Soft thresholding
by 7 is expressed by

7wa/|fw‘7 if |fw| >1

thresh,(f),, = {fw 0 if 11, < (11)
) 1 [ON NN T.

So for indices w at which |f,,| > 7, soft thresholding is the
same as subtracting tVL. The replacement step of IST is
expressed by
f — DFT{[IDFT(f) — trunc(IDFT(f))] + zerofill(d) }

=f — DFT{trunc(IDFT(f) — zerofill(d)}. (12)

Comparison with Eq. (10) shows that replacement is the
same as subtracting VC. So combining the replacement
operation and the thresholding operation, we see that one
iteration of IST corresponds to motion opposite the gradi-
ent of O, and a fixed point of IST corresponds to a mini-
mum of Q.

This description is not quite complete, since VL is not
defined for f,, =0 and soft thresholding is not the same
as subtracting tf,./|f.,| if |f,,| < t. Nevertheless, the descrip-
tion does suggest the relationship between IST and mini-
mum /;-norm reconstruction; the formal proof of their
equivalence is given in the Appendix.

This equivalence shows how IST can be generalized to
perform deconvolution. Deconvolving a decay w involves
reconstructing a spectrum whose IDFT, when weighted
by w, agrees with the experimental FID. This weighting
can be incorporated into Eq. (2) by setting

g

—1

! (Wi IDFT(f), — di|*. (13)

c(f) = 3
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The corresponding modification to Egs. (8) and (9) sim-
ply involve setting the diagonal elements of the matrix K
equal to w. The only change needed in IST is to adjust
the replacement operation so that it coincides with motion
opposite the gradient of the revised constraint. In operator
notation, this becomes

f — f + DFT{zerofill[weight[d
— weight(shrink(IDFT(f)))]]}, (14)

where the weight operator corresponds to pointwise multi-
plication by the decay w.

IST is capable of reconstructing spectra for nonuniformly
sampled data (15). Indeed, this can be viewed as a special case
of deconvolution: the weights for points not sampled are
simply set to zero.

4. Relationship of IST to MaxEnt

The equivalence of IST and minimum /;-norm recon-
struction also makes clear the similarity to MaxEnt. The
basic aim of MaxEnt reconstruction is the same as that
of minimum /;-norm reconstruction, except the regulariza-
tion functional is the entropy, rather than the /;-norm. The
entropy functional S is approximately given by

s = -3 fullog fa. (15)

=0

The main difference between the entropy and the
/i-norm is the opposite sign; consequently maximizing
the entropy is very similar to minimizing the /;-norm.
It has been shown that under certain circumstances, the
action of MaxEnt reconstruction is equivalent to a non-
linear scaling of the DFT spectrum [25]. The nonlinear
scaling reduces the absolute value of each point in the
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spectrum; small values are scaled down proportionally
more than large values. The similarity to soft threshold-
ing is clear.

5. Convergence of IST

While the formal results presented in the Appendix
show that the fixed-point of IST is the minimum /;-norm
reconstruction, they say nothing about how quickly IST
converges. Indeed, the finite precision of computer arith-
metic makes it entirely possible that the stepsize may
reach machine zero—a value smaller than the smallest
non-zero number that can be represented—well before
the minimum of Q has been reached. Should this happen,
the algorithm would appear to have converged, but it
would not produce the correct result. In testing for con-
vergence, therefore, it is important that we monitor not
only the stepsize, defined by

| 1/2
Stepsize = lN QZ% [fu(i+1) —fw(i)|2] ; (16)

where f,,(i) is the wth element of f at iteration Z, but also the
quantity

VL vC

— == 17
|VL] v’ (17

Test = ‘

which is equal to zero only at a minimum of Q (At indices
o for which f,, =0, the gradient of L is not defined; these
indices can simply be ignored in calculating Test.)

Fig. 2 shows various spectrum reconstructions of a fj
column from a NOESY data set (following processing
in f;) in which the diagonal resonance is about 10 times
more intense than the off-diagonal resonances. Row (a)
is the unapodized, zero-filled DFT. The result of IST
applied for 800 steps is shown in row (b); Stepsize
became negligibly small, but not zero. Row (c) shows
the results of a modified algorithm in which the change
during each iteration is —pf(i)VQ, instead of —VQ,
where f(i) is a scale factor chosen to minimize Q at
iteration #; it can be found by a simple line search
(we refer to this algorithm as line-search IST, as
opposed to simple IST).

Fig. 3 shows Q, Test, and Stepsize as a function of 7.
Since IST moves opposite VQ, the value of Q always
decreases monotonically, in contrast to Test and Stepsize.
The non-monotonic behavior of Stepsize and Test for
line-search IST reflects well-known deficiencies of gradi-
ent descent [26]. Fig. 3 also shows that merely monitor-
ing Stepsize is not a safe way to test for convergence,
since it becomes very small for simple IST even while
Q is still changing. Test has not converged to zero for
simple IST even after 800 iterations. In contrast, Test
converges to zero for line-search IST at about the time
that Stepsize becomes very small. The final values for
Q are 14,830 and 14,665 for simple IST and line-search
IST, respectively.
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Fig. 2. Spectral reconstructions of an f; column from NOESY data for a
66-residue protein. Row (a) is the unapodized zero-filled DFT spectrum;
rows (b) and (c) show the results of 800 iterations of simple and line-search
IST, respectively. Row (d) is the result of 40 iterations of MaxEnt
reconstruction.

6. Robustness of minimum /;-norm reconstruction

Fig. 2 illustrates that IST is capable of suppressing the
truncation artifacts typical of zero-filled DFT spectra.
For comparison, row (d) of Fig. 2 shows a MaxEnt recon-
struction. The most striking difference is that minimum
/i-norm reconstruction apparently “resolves’ fine structure
in the peaks that is not evident at all in the MaxEnt recon-
struction. A simple test demonstrates that the additional
structure in the minimum /;-norm reconstruction is not
correct. Fig. 4 contains IST and MaxEnt reconstructions
for the same data as Fig. 3, except that a single synthetic
decaying sinusoid has been added to the time domain data
prior to reconstruction. Row (a) shows that IST yields an
artifactual split line, while MaxEnt (row b) correctly yields
a single peak. The reconstructions agree equally well with
the time domain data: they have identical values of C(f).

In addition to proving more robust, MaxEnt reconstruc-
tion is more efficient. The modified Cambridge algorithm
used to compute the MaxEnt reconstruction [18,22]
involves eight discrete Fourier transformations during each
iteration (except the first), plus several other matrix opera-
tions. Line-search IST requires two DFTs per iteration.
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Fig. 3. Testing for convergence of IST by plotting the values of the objective function Q, Test, and it Stepsize. Note that for simple IST, Q, and Test

continue to decrease even after Stepsize has approached zero.
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Fig. 4. Reconstructions of the same data shown in Fig. 2, except that a
single decaying sinusoid was added to the time domain data. The artificial
peak is indicated by the arrow. (a) Eight hundred iterations of IST. (b)
MaxEnt reconstruction.

IST typically requires on the order of ten times as many
iterations as MaxEnt; the reconstructions in Fig. 4 used
800 iterations of line-search IST and 40 iterations of Max-
Ent, and the MaxEnt processing required approximately
one-sixth the computer time of IST. The difference in
efficiency can be attributed mainly to the sophisticated

optimizer used in the Cambridge algorithm, which incorpo-
rates elements of conjugate-gradient and variable metric
optimizers, in contrast to the simple gradient-descent of
line-search IST. In principle, computation of minimum
/;-norm reconstructions could be made comparably efficient
to MaxEnt reconstruction by the use of more sophisticated
search techniques.

7. Concluding remarks

Iterative thresholding algorithms have proven to be
popular because of their simplicity. We have shown that
iterated soft thresholding leads to the computation of the
minimum /;-norm reconstruction, and is closely related to
MaxEnt and minimum-area reconstruction. Although sim-
ple implementations of minimum /;-norm reconstruction
and MaxEnt reconstruction based on more powerful opti-
mization techniques can yield strikingly different results,
the differences appear to be due to the relative robustness
of the optimizers employed, and not the objective
functions.

The relationship among thresholding, minimum /;-norm
reconstruction, and MaxEnt reconstruction demonstrated
here provides an avenue for unifying these different
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approaches to the problem of spectrum reconstruction and
deconvolution.
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